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Solving Quadratic Assignment 
Problems by 'Simulated Annealing' 

MICKEY R.  WILHELM, Ph.D., P.E. 
SENIOR MEMBER. IIE 

THOMAS L. WARD, Ph.D., P.E. 
SENIOR MEMBER, IIE 

Department of Industrial Engineering 
Univenity of Louirville 

Louisville, Kentucky 40292 

Abstract: Recently, an interesting analogy between problems in combinatorial optimization and statistical mechanics 
has been developed and has proven useful in solving certain traditional optimization problems such as computer 
design, partitioning, component placement, wiring, and traveling salesman problems. The analogy has resulted in a 
methodology, termed "simulated annealing," which, in the process of iterating to an optimum, uses Monte Carlo 
sampling to occasionally accept solutions to discrete optimization problems which increase rather than decrease the 
objective function value. This process is counter to the normal 'steepest-descent' algorithmic approach. However, 
it is argued in the analogy that by taking such controlled uphill steps, the optimizing algorithm need not get "stuck" 
on inferior solutions. 

This paper presents an application of the simulated annealing method to solve the quadratic assignment problem 
(QAP). Performance is tested on a set of "standard" problems, as well as some newly generated larger problems 
(n = 50 and n = 100). The results are compared to those from other traditional heuristics, e.g., CRAFT, biased 
sampling, and a revised Hillier procedure. It is shown that under certain conditions simulated annealing can yield 
higher quality (lower cost) solutions at comparable CPU times. However, the simulated annealing algorithm is 
sensitive to a number of parameters, some of whose effects are investigated and reported herein through the analysis 
of an experimental design. 

W The quadratic assignment problem (QAP) arises in facil- 
ities location and layout problems when facilities are to be 
assigned to sites and when there are interactions between the 
facilities that depend upon their location (e.g., [I]). For ex- 
ample, if cikih is the "cost" of locating facility i at site k and 
facility j at site h (usually defined as the product of the flow 
between facilities i and j and the distance between sites k and 
h ) ,  then the formulation of the QAP has been written as the 
minisum problem PI: below [Z]: 

PI: Minimize f ( x )  = (112) i i i i cjkjh xjk xjh 
; - I  k - I  j - I  h - 1  

Subject to: xfi = 1, k = 1, 2, . . . , n 
i = l  

x;r = 0 or 1, for all i, k 

Received June 1985; revised November 1985. Handled by the Facilities Derignl 
Location Analysis. 

In this formulation, the first two constraint equation sets en- 
sure that exactly n facilities are to be assigned to exactly n 
sites. Such a QAP is said to have a problem size n. The last 
constraint implies that each variable, x,k, for all i ,  k, is one 
if facility i is located at site k, otherwise it is zero. 

As a matter of computational convenience, a QAP assign- 
ment (or solution) can be represented by the n-vector: 

where the element a(i) in the assignment vector a denotes 
the number of the site to which facility i has been assigned 
[Z]. Therefore, the assignment vector a provides the subscripts 
of the variables x,k,  where k = a(i), in problem PI which 
should be set equal to one in order to provide a complete, 
minimum cost assignment of facilities to sites. For example, 
if n = 4 and the final assignment vector is a = [Z, 4, 1, 31, 
then a implies that x12 = x24 = xz, = x a  = I ,  which means 
that facilities 1, 2, 3, and 4 should be assigned to sites 2, 4, 
1, and 3, respectively, and all other x;x = 0. It is easy to test 
a particular assignment vector a to see whether it satisfies the 
constraints given in problem PI. It is also easy (at least con- 
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ceptually) to totally enumerate all possible assignments of 
facilities to sites. 

The QAP is a powerful model with a large number of 
potential real world applications (2, 3). For example, QAP 
applications include the assignment of a number of plants, 
warehouses or indivisible operations to a number of geo- 
graphical sites, facility layout, the layout of indicators and 
controls on a control panel, the layout of electronic com- 
ponents on a printed circuit board, assigning storage space 
on computer disc storage devices, sequencing work through 
a production facility, routing (traveling salesman) problems 
and so on 141. 

The extent to which the QAP formulation can fulfill its 
application potential depends on the existence of computa- 
tionally feasible and efficient solution procedures. The com- 
putational efficiency of a QAP solution technique is often 
measured by the functional dependence of solution time on 
problem size. However, Sahni and Gonzalez [5] have shown 
that the QAP is NPcomplete. It has been conjectured [6] that 
there is no solution technique which has a polynomially 
bounded solution time for problems of this class. In partic- 
ular, Foulds [7] has suggested that QAP solution times are 
likely to be an exponential function of the problem size, n. 

Although the Literature reports numerous algorithms ca- 
pable of determining exact (optimal) solutions to quadratic 
assignment problems [e.g., 81, they are currently only com- 
putationally feasible for very small problems (n s 17), or for 
special cases of the QAP [3,7]. It is not surprising, therefore, 
that much research effort has been devoted to devising heu- 
ristic solution procedures which run in "reasonable" com- 
puter time and yield solutions of "acceptable", if not optimal, 
quality. 

Heuristic approaches to quadratic assignment problems 
have been generally classified as either 'construction' pro- 
cedures or 'improvement' procedures [9]. Construction pro- 
cedures attempt to build a solution from the null solution by 
making successive assignments of facilities to sites; whereas, 
improvement procedures start with a complete initial assign- 
ment of facilities to sites and attempt to iteratively improve 
upon it. 

The purpose of this paper is to present the results of ex- 
perimental applications of a new heuristic approach, which 
has been termed 'simulated annealing', to the solution of 
quadratic assignment problems. 

Previous Work 

Koopmans and Beckmann [lo] first formulated the QAP 
in 1957 and applied optimization procedures to solve it. Be- 
cause of the computational difficulties initially encountered 
in solving QAP's, numerous other researchers have at- 
tempted the development of exact solution algorithms, e.g., 
Lawler [I l l ,  Gavett and Plyter (121, Graves and Whinston 
[13], Pierce and Crowston 141, Bazaraa and Elshafei 1141, and 
Bazaraa and Sherali [IS]. Most of the solution approaches 
taken by those researchers are based on a branch and bound 

strategy. However, as previously stated, the exact solution 
approaches have not been able to overcome the intractability 
of the QAP, traceable to the fact that it is NP complete, and 
thus are limited in application to small problems 
(n < 17). 

As previously discussed, heuristics (of both the construc- 
tion and improvement types) have been introduced to solve 
larger problems than those solvable by exact approaches. 
Construction type heuristics, e.g., Hanan and Kurtzberg [a], 
Burkard and Stratmann [16] and Liggett [17], do not, in gen- 
eral, yield solutions that are near optimal. Improvement type 
heuristics which start with an initial solution and, through 
facility locational exchanges, attempt to reduce the cost of 
assignment have been found to yield superior solutions, e.g., 
Hillier [18], Hillier and Connors [19], Nugent, Vollman and 
Ruml [9], Wilhelm, et. al. [I], and Picone and Wilhelm [20]. 

Two of the best improvement procedures, by general con- 
sensus, are that employed by CRAFT (Computerized Rela- 
tive Allocation of Facilities Technique) 1211, and that 
employed in a variation on CRAFT by Nugent, Vollman and 
Ruml [9], known as the Biased Sampling Technique. The 
attribute of biased sampling that gives rise to its ability to 
yield better solutions than CRAFT is the technique used to 
select facilities for location interchange in the improvement 
iterations. Biased sampling assigns to the facility painvise 
exchange with the greatest potential cost reduction a prob- 
ability of selection less than one, thereby allowing the possible 
selection of any pairwise exchange which leads to a cost re- 
duction. This capability circumvents the strictly steepest-de- 
scent algorithmic approach, used in original versions of 
CRAFT as well as similarly based algorithms contributed by 
other researchers, which could get "stuck" on inferior solu- 
tions. Nugent, Vollman and Ruml, concluded that biased 
sampling produced better solutions than both CRAFT 1211 
and the Hillier and Connors procedure [19], but at relatively 
higher computational costs. 

Typical of an approach taken by a number of researchers 
recently is that of Picone and Wilhelm 1201 which extends the 
methods of Armour and Buffa 1211, Hillier [IS] and Hillier 
and Connors 1191 by expanding the 'neighborhood' searched 
in making X-wise interchanges of facility locations. Termed 
a Revised Hillier procedure, they investigate 3- andior Cway 
perturbations at each iteration of the Hillier procedure with 
the goal of improving the quality of the solution (minimizing 
cost) while controlling (minimizing) run time. They report 
yields of solutions of higher quality than those obtained by 
CRAFT and the original Hillier procedure, while requiring 
only modest increases in computer run time. 

Simulated Annealing 

An improvement procedure bearing some similarity to the 
biased sampling approach [9] has been termed simulated an- 
nealing. This interesting name has been proffered because of 
a useful analogy between statistical mechanics (the behavior 
of systems with many degrees of freedom in thermal equi- 
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librium at a finite temperature) and combinatorial optimi- 
zation (exemplified by problems like the QAP) that was 
recently proposed [22]. 

"Statistical mechanics is the central discipline of condensed 
matter physics, a body of methods for analyzing aggregate 
properties of the large numben of atoms to be found in sam- 
ples of liquid or solid matter" [22]. The reason for the term 
"statistical" mechanics is that because of the large number 
of atoms (approximately 10~"er cubic centimeter), their ag- 
gregate behavior is characterized by observation of random 
fluctuations about the most probable (average) behavior of 
the system at a specific temperature 1231. A fundamental 
question in statistical mechanics concerns what happens to 
the system in the limit as the temperature approaches the 
ground state, e.g., whether the atoms remain fluid or solidify. 

The low temperature is referred to as the "ground state" 
and is the lowest energy state of the system [24]. Ground 
states, and the atomic configurations of macroscopic bodies 
resembling them, are extremely rare at elevated tempera- 
tures, but are predominate properties at low temperatures. 
However, low temperatures alone are not sufficient for find- 
ing the ground states of matter 1221. In practice, experiments 
designed to find the ground states are performed by careful 
annealing, i.e., by first melting the system at a high temper- 
ature, then lowering the temperature slowly (according to an 
annealing schedule), finally spending a long time at temper- 
atures in the vicinity of the freezing, or solidification, point. 
The amount of time spent at each temperature during the 
annealing process must be sufficiently long to allow the system 
to reach thermal equilibrium (steady state). If care is not 
taken in adhering to the annealing schedule (the combination 
of a set of temperatures and length of time to maintain the 
system at each temperature), undesirable random fluctuations 
may be frozen into the material thereby making the attain- 
ment of the ground state impossible. 

Metropolis, et. al. 1251, devised a simple Monte Carlo ap- 
proach to simulate the behavior of a collection of atoms in 
achieving thermal equilibrium at a given temperature. The 
procedure may be stated as [25, 23, 241: 

Given a configuration of the elements of the system, ran- 
domly displace the elements, one at a time, by a small 
amount and calculate the resulting change in energy, AE. 
If AE < 0 then accept the displacement and use the re- 
sulting configuration as the starting point for the next it- 
eration. If AE > 0, then the displacement is accepted with 
probability P(AE) = exp ( -  A ElkbT), where Tis the tem- 
perature and kg is Boltzmann's constant, which is not re- 
quired when applying the Metropolis algorithm to 
combinatorial problems. 

The Monte Carlo sampling aspect of this simulation is in- 
corporated by comparing P ( A E )  with a random variable 
drawn from a uniform distribution on the interval (0, 1). 
Notice that there is a probability of P(AE) that an atomic 
rearrangement which increases the energy of the system will 
be accepted. This process is continued until equilibrium is 
achieved, then the temperature is lowered according to the 

annealing schedule and the procedure is repeated until the 
system freezes. At each temperature, the annealing schedule 
must allow the simulation to proceed long enough for the 
system to reach steady state. 

The analogy which suggests that the simulated annealing 
approach may be effective and efficient in solving combina- 
torial optimization problems like the QAP should now be 
apparent. If each feasible assignment of facilities to sites in 
a QAP is viewed as a configuration of atoms in the mechanical 
system, and the value of the objective cost function in P1 is 
viewed as the energy of the system, then determining the 
least cost assignment of facilities to sites is analogous to find- 
ing the arrangement of atoms in the mechanical system which 
results in the lowest energy (ground) state. 

Kirkpatrick, Gelatt and Vecchi [22], after drawing atten- 
tion to the analogy between statistical mechanics and com- 
binatorial optimization problems, applied the simulated 
annealing approach to the solution of a circuit board layout 
and wiring problem, and to the traveling salesman problem 
(TSP). They concluded that good quality solutions to both 
of these problem types are attainable with annealing sched- 
ules for which the amount of computational effort scales as 
n ,  or as a small power of n. Encouraged by these results; they 
hypothesized the fruitfulness of a wide application of this 
heuristic technique to other combinatorial optimization prob- 
lems. 

Golden and Skiscim [23, 241 investigated the application 
of simulated annealing to traveling salesman problems and 
to p-median network location problems. They developed an 
algorithm and conducted experiments regarding the effects 
of various parameters, e.g., annealing schedule, tests for 
steady state at each temperature, stopping rules, etc., on 
solution time and quality. They found the simulated annealing 
procedure to be very sensitive to a number of control param- 
eters and stopping criteria. They were unable to determine 
an implementation strategy which performs consistently well 
on the TSP. Further, their experiments with simulated an- 
nealing in solvingp-median problems were also discouraging: 
a substantial increase in computation time to obtain solutions 
only slightly better than those obtained from the use of simple 
node interchange heuristics. 

However, they pointed out that TSP's have been studied 
for many yean and it may be unfair to expect a new procedure 
like simulated annealing to perform as well as the best known 
TSP algorithms without more extensive evaluation. There- 
fore, they recommended more research to learn more about 
the potential benefits of using simulated annealing to solve 
TSP and other combinatorial optimization problems. 

Bonomi and Lutton [26] also studied the application of a 
simulated annealing approach in solving TSP's. However, in 
contrast to Golden and Skiscim, their conclusions regarding 
the usefulness of simulated annealing were quite positive. 
They noted, "The resulting Metropolis algorithm seems to 
be a powerful numerical tool for solving large difficult prob- 
lems provided it is supplemented by an efficient trial config- 
uration selection mechanism favouring the choice of 
'important' configurations." 
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Burkard and Rendl [27] presented some computational re- 
sults from the application of simulated annealing to QAP's. 
They compared the simulated annealing results with those 
from other fast, sophisticated heuristics for solving QAP's 
which they had previously developed and noted that it per- 
formed well. They concluded that the simulated annealing 
procedure should be considered an efficient algorithm for 
solving QAP's with respect to both solution quality and com- 
putational time required. 

However, Burkard and Rendl did not provide very many 
details regarding the settings of the control parameters (or 
annealing schedule) used in their algorithm aside from the 
advice that computation time and efficiency may be controlled 
by "setting the 'cooling parameter' less than hut close to one, 
or,  independently setting the number of iterations sufficiently 
high." This lack of information makes it very difficult, if not 
impossible, to duplicate their results. 

In the following sections, a simulated annealing algorithm 
for solving QAP's, which performs better than that in [27], 
is presented and evaluated experimentally. 

The Simulated Annealing Algorithm 

This section outlines the general algorithm and the features 
of the implementation of a simulated annealing heuristic for 
solving quadratic assignment problems. 

Nomenclature 

S = { t l ,  12, . . . , t,). a set of annealing schedule temper- 
atures, where t; = (10)(0.9)" V i = 1, 2, . . . , r 
therefore; t, > t2 > r3 > . . . > I,-, > t,. 

e = Epoch interval - an u prior; number of accepted 
pairwise interchanges of facility locations at tem- 
perature t,, where e is an integer. 

f. = j a(a))e where e is defmed above and where 
j-1 

fc(a) = mean of the total costsfi(a) for each of the 
accepted facility locational assignment interchanges 
j = 1 , 2 ?  . . . , e, during the current epoch interval. 

f: = Value of the grand mean of the f, for all previous 
epochs at a specific temperature, 1,. 

E = an error constant used to determine whether the 
system is in equilibrium at a specific temperature, 
1,. 

J = a constant representing the total number of inter- 
changes attempted at the current temperature 1,. 

N' = a constant which when multiplied by the problem 
size, n, defines the maximum value of J .  

I; = number of accepted interchanged positions for fa- 
cility p ,  V p  = 1, 2, . . . , n, at the current temper- 
ature 1,. 

N = a constant defining the minimum required value of 
I; per epoch. 

I, = iteration counter. 

a' = [a(l), a(2), . . . , a(n)], the initial assignment vector 
of facilities to locations. 

a* = "current best" least cost assignment of facilities to 
sites. 

a = the current assignment of facilities to locations at 
any iteration of the algorithm. 

Adapting the Metropolis, et al.,  [25] procedure stated pre- 
viously, we may outline a general algorithm for application 
of simulated annealing in solving the QAP. 

General Algorithm 

For a given annealing schedule of temperatures, S = (11, 
12, . . . , 171, 

Step 1 Determine an initial assignment (configuration), an, 
- of facilities to sites, perhaps randomly. Set a = a' 

and i = 1. 

Step 2 Compute the total cost (energy) of the current as- 
signment, f(a), from the objective function in problem 
PI .  

Step 3 a. Randomly select two facilities (elements), u and - 
v, for location exchange, resulting in an assignment 
a'. Evaluate the consequent change in total cost 
(energy), Af = f(a) - f(a'). If Af s 0, go to step 
3 b; otherwise, go to step 3 c. 

b. Select a random variable x - U(0, I). If 

x < P(A0 -. exp (-Afit;), 

then go to step 3 c; otherwise go to step 3 a. 

c. Accept the painvise exchange, set a = a' and 
f(a) = f(a ') ,  then go to step 4. 

Step 4 If equilibrium has not been reached at temperature 
- I,, i.e., if the system has not dwelled at the current 

temperature for a sufficient length of time, go to step 
3 a. Otherwise, set i = i + 1 ,  which amounts to 
reducing the temperature to the next one in the an- 
nealing schedule, and go to step 5. 

Step 5 If all temperatures in the annealing schedule have - 
been used, i.e., if i > r, STOP. Otherwise, go to step 
3 a. 

Now, as was pointed out by Kirkpatrick, Gelatt and Vecchi 
[22], two of the most important issues in implementing the 
general simulated annealing approach are those of the an- 
nealing schedule, S, and the test for equilibrium at each tem- 
perature in the foregoing algorithm. With respect to the 
temperatures in the annealing schedule, tests were conducted 
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to determine how high 'temperatures' should be set in order 
to ensure 'melting' of the system. Then various schema for 
determining the individual temperatures, I , ,  in the annealing 
schedule were plotted for analysis. The schema ranged from 
a constant step size to various non-linear step sizes. Finally, 
it was decided that the equation used by both Kirkpatrick, 
Gelatt and Vecchi (221 and Golden and Skiscim [23] would 
be used, i.e., 

r; = (10)(0.9)", for i = 1, 2, . . . , r. 

Regarding the system equilibrium at each temperature is- 
sue, here again Golden and Skiscim's [23] work provided 
some insights. They developed the concept of only testing for 
equilibrium of the system at each epoch, where for the QAP 
implementation an epoch, e,  is defined as an apriori specified 
number of accepted pairwise interchanges of facility loca- 
tions. Thus, for each temperature t; in the annealing schedule, 
after execution of each epoch, i.e., after e pairwise inter- 
changes have been accepted, the mean of the - total costs for 
all the assignments accepted during the epoch, f,, is compared 
with the grand mean,?;, of the total costs of assignments for 
all preceding epochs at temperature I,. If the mean total cost 
for the most recent epoch is sufficiently close (within 6 )  of 
the grand mean, the system is assumed to be in equilibrium 
at temperature I;. Then, the next annealing temperature is 
selected and the procedure is repeated. 

In an effort to avoid excessive running times, particularly 
at low temperatures when the system is 'freezing-up' (rela- 
tively few interchanges accepted), Kirkpatrick's, Gelatt and 
Vecchi [22] suggestions were taken, i.e., at each temperature 
I ; ,  enough exchanges, J ,  are attempted so that either: (I) at 
least an a priori constant, N, number of interchanges of lo- 
cation per facility, I;, are accepted, or (2) the number of 
attempted pairwise interchanges exceeds an a priori constant 
N' times the number of facilities, n. If the desired number 
of acceptances of location interchanges is not achieved at 
three successive temperatures, the system is considered fro- 
zen, and the last, least cost facility assignment a* is considered 
the 'best' facility location assignment. 

With the foregoing explanation of the concepts, assump- 
tions and parameters involved in using the simulated an- 
nealing approach to solve the QAP, the following heuristic 
was implemented and used to experiment with this applica- 
tion [23]: 

Simulated Annealing Heuristic 

Step 1 Set i = 1, I, = 0 - 
Step 2 Execute step - 3 of the general algorithm for one epoch, - 

e. Compute f,. 

Step 3 Equilibrium test. If I f ,  - f:117: S E, go to step 4; 
otherwise, return to step 2. 

Step 4 Annealing temperature change. i = i + 1. If all de- 
- partments have been involved in at least N  inter- 

changes (1; 2 N ) ,  set I, = 0 and go to step 2; 
otherwise, go to step 5. 

Step 5 If the total number of attempted interchanges is not - 
at least N'n ( J  ?+ N'n), go to step 2; otherwise, set 
I, = I, t 1 and go to step 6. 

Step 6 If I, = 3, STOP; otherwise, go to step 2. - 
The heuristic has been implemented on a DEC System 10 

mainframe computer system. A flowchart of that implemen- 
tation is shown in Figure 1. 

Experimental Evaluation 

In the form presented, the effectiveness andlor efficiency 
of the algorithm is influenced by a number of parameters. In 
order to gauge their influence, some of the parameters hy- 
pothesized to be most important with respect to solution time 
and quality, were selected for study. Specifically, the effects 
of problem size, n ,  the length of the epoch interval (number 
of interchanges per epoch), e, the constant N', and the steady 
state error constant, c, were chosen for study. 

An experiment with four factors (n, e, c and N ' )  was de- 
signed, with replication within each combination of factors 
to be achieved by varying the starting assignment of facilities 
to sites, a'. 

Based upon some experimental results by Golden and Ski- 
scim [23, 241, the following levels of three of the factors were 
employed in the experimental design: 

Factor Levels 

e 5, 15, 25, 50 
c 0.25, 0.10, 0.01 

N' 10, 50, 100 

In a frequently cited paper in QAP literature, Nugent, 
Vollman and Ruml [9], compared a number of well accepted 
improvement type solution procedures: H63 (Hillier [18]), 
HC63-66 (Hillier and Connors [19]), CRAFT (Armour and 
Buffa [21]), and biased sampling (Nugent, Vollman and Ruml 
[9]). These procedures were applied to a common set of eight 
problems having n = 5 , 6 ,  7, 8, 12, 15, 20, and 30 facilities, 
respectively, for five random starting assignments per prob- 
lem. This same set of test problems plus problems for n = 

50 and n = 100, for which two starting assignments per prob- 
lem and flow data were generated from uniform distributions, 
were used in the experimental design. The site layouts (lo- 
cations) are shown in Figure 2 for the problems solved in the 
experimental evaluation. The squares in Figure 2 represent 
sites and the numbers in the squares are site numben. 

The 'costs', cikj,,, in the objective function of problem P1 
are assumed to be the product of the flow between facilities 
i and j and the rectilinear distance between the centroids of 
their site locations, k and h ,  respectively. The squares in the 
layouts of Figure 2 are assumed to be "unit squares," so for 
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compv1e the rota, cor, 0, the 
'""'I ers8gnmeot 
f(aO, and set 

r c  = 0 

PARAMETER INITIALIZATION 
I p ' - O . V P =  s . 2  n 

X - l  

Figure 1. Flowchan of the simulated annealing heu- 
ristic implementation. 
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Figure 2. Layouts of site locations for the problems solved. 

the layouts given it is quite simple to construct matrices whose 
elements are the distances between sites. Both the flow and 
distance matrices for the first eight experimental problems as 
well as the five starting assignments per problem are given in 
[9]. The flow and distance matrices for the new problems with 
n = 50 and n = 100, as well as the two starting assignments 
used per problem, are available by contacting the authors. 

The experimental design was implemented using the data 
layout shown in Figure 3. This data layout required the eval- 
uation of 1440 experimental conditions for the Nugent, Voll- 
man and Ruml, problems plus 144 experimental conditions 
for the n = 50 and n = 100 problems. The purpose of the 
design was to study the effect of the factors on two dependent 
variables: CPU time and solution quality (objective function 
value of the least-cost assignment found). Hence, each data 
point obtained in the data layout represents the execution of 
the simulated annealing heuristic, coded in FORTRAN IV, 
for each of the 1584 experimental conditions on a DEC KL 
1059 mainframe computer. For each experimental condition 

both the minimum total cost and the associated least cost 
assignment as well as the CPU time required for the system 
to "freeze" were noted. 

Throughout the experiment, the other parameters of the 
algorithm, e.g., N, maximum I,, and the annealing temper- 
ature equation for calculation of I, were held constant at 
N = 10, maximum I, = 3, and I, = (10)(0.9)'-' for i = 1, 
2 ,  . . . , respectively, as recommended by Kirkpatrick, et. al. 
[ I l l .  

Results 

Tables 1 and 2 illustrate the results of the computational 
study outlined in the preceding section. Table 1 contains the 
percentage above the best known solution, averaged over 
starting solutions (replication), obtained by the simulated an- 
nealing heuristic for all values of n, e, and N'. Similarly, 
Table 2 contains the CPU times (seconds), averaged over 
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For each n = 5,6, . . . , 30 

Figure 3. Format of experimental design for n = 5, 6, 7, 8, 12, 15, 20 and 30 
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I 

Table 1. Percentages above best known solutions, averaged over stalling solutions a', obtained by the simulated annealing heuristic 

N' 

10 

50 

100 

for 

e = 5  

0.25 0.10 0.01 

0.00 0.00 0.00 
0.00 0.00 0.00 
1.08 1.08 0.54 
0.56 0.56 0.93 
3.46 2.98 3.25 
4.87 4.67 3.72 
3.83 3.83 3.52 
4.00 4.00 5.48 
1.11 1.60 1.33 
0.88 0.62 0.62 

0.00 0.00 0.00 
0.00 0.W 0.00 
0.27 0.27 0.54 
0.00 0.00 0.37 
2.70 2.70 2.35 
1.77 1.77 1.84 
2.83 2.83 2.77 
2.75 2.75 3.39 
1.17 1.17 1.17 
0.43 0.43 0.43 

0.00 0.00 0.00 
0.00 0.00 0.00 
0.27 0.27 0.54 
0.00 0.00 0.00 
2.70 2.70 2.35 
1.67 1.67 1.84 
2.71 2.71 3.02 
2.70 2.70 3.08 
1.17 1.17 1.17 
0.41 0.41 0.41 

Best 
Known 
Soln. 

25 
43 
74 
107 
289 
575 
1285 
3064 
24472 
13701 1 

25 
43 
74 
107 
289 
575 
1285 
3064 
24472 
137011 

25 
43 
74 
107 
a 9  
575 
1285 
3064 
24472 
13701 1 

e = 25 

0.25 0.10 0.01 

0.00 0.00 0.00 
0.00 0.00 1.40 
0.00 1.35 1.62 
2.43 2.62 3.55 
7.34 4.36 9.00 
2.78 3.65 8.00 
4.68 5.31 7.30 
4.86 4.86 6.18 
1.69 1.69 1.37 
1.78 1.55 1.55 

0.00 0.00 0.00 
0.00 0.00 0.00 
0.00 0.00 0.00 
0.00 0.00 0.00 
1.04 1.11 1.31 
1.32 1.36 1.81 
1.77 1.85 1.73 
1.95 1.95 1.33 
0.53 0.53 010 
0.95 0.95 0.95 

0.00 0.00 0.00 
0.00 0.00 0.00 
0.00 0.00 0.00 
0.00 0.00 0.00 
0.69 1.59 0.69 
1.32 1.29 0.56 
1.65 1.53 1.79 
1.61 1.61 1.17 
0.43 0.43 0.06 
0.81 0.81 0.61 

all n, e, r, N' 

e = 15 

0.25 0.10 0.01 

0.00 0.00 0.00 
0.00 0.00 0.00 
0.27 0.27 1.35 
1.87 1.31 3.18 
2.77 3.67 5.61 
3.90 4.24 6.40 
4.87 4.87 6.19 
4.46 4.46 4.78 
1.52 1.52 1.02 
1.35 1.35 1.35 

0.00 0.00 0.00 
0.00 0.00 0.00 
0.00 0.27 0.00 
0.00 0.00 0.00 
1.80 1.66 1.38 
0.56 0.90 1.04 
1.63 1.63 1.71 
2.15 2.15 1.86 
0.74 6.51 0.45 
0.77 0.77 0.77 

0.00 0.00 0.00 
0.00 0.00 0.00 
0.00 0.27 0.00 
0.00 0.00 0.00 
1.80 1.52 0.90 
0.56 0.90 0.77 
1.60 1.60 1.98 
1.83 1.83 1.55 
0.57 0.57 0.37 
0.68 0.68 0.68 

r 
n 

5 
6 
7 
8 
12 
15 
20 
30 
50 
100 

5 
6 
7 
8 
12 
15 
20 
30 
50 
100 

5 
6 
7 
8 
12 
15 
20 
30 
50 
100 

e = 50 

0.25 0.10 0.01 

0.00 0.00 0.00 
0.00 1.40 0.00 
2.43 2.43 2.43 
3.93 2.24 3.93 
9.13 9.27 9.27 
9.15 9.15 7.69 
7.91 8.17 7.30 
6.48 7.00 7.53 
2.03 2.03 1.90 
1.14 1.14 1.14 

0.00 0.00 0.00 
0.00 0.00 0.00 
0.00 0.00 0.00 
0.00 0.00 0.00 
0.90 1.18 2.01 
0.63 1.08 2.40 
2.65 2.77 2.65 
2.20 1.70 3.37 
0.47 0.47 0.04 
0.24 0.24 0.24 

0.00 0.00 0.00 
0.00 0.00 0.00 
0.00 0.00 0.00 
0.00 0.00 0.00 
1.87 1.38 1.31 
0.52 0.59 0.77 
1.11 1.26 1.26 
2.00 1.36 1.58 
0.35 0.35 0.09 
0.17 0.17 0.39 
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starting solutions, required by the heuristic to satisfy the stop- 
ping criterion for all values of n, e, t and N'. 

The data reported in Tables 1 and 2 were averaged over 
starting solutions (replication), for two reasons. First, there 
was very little variation in both so:ution quality and CPU 
time with starting solution (in the range 0% to 5% for n 3 

12). Second, publication space constraints prohibit inclusion 
of all data (including the complete data set would require 20 
pages). Interested readers may contact the authors for a com- 
plete set of data. 

The data in Tables 1 and 2 provides important insights into 
the performance of the simulated annealing heuristic with 
variation in the four main parameter settings, [ n ,  e ,  r ,  and 
N']. For example, with the exception of N' = 10 for n = 7, 
8, for the small problems, 5 S n S 8, very little change is 
seen in either solution quality or CPU time for the various 
settings of e and t. The probable reason for the exception at 
N' = 10 is that an insufficient number of interchanges were 
attempted at each temperature to reach equilibrium. This 
problem gets wane as n increases. Further, as N' increases 
for each n, the CPU time required by the heuristic increases. 

By observing Tables 1 and 2, we see that the best quality 
solutions for problems of size 8 < n S 30 are achieved for 

Table 2. CPU times in sewnds, averaged over malting solution a', required by the simulated annealing heuristic to salisty the stopping 

the highest level of N' = 100, a mid-range level of e = 15 
or e = 25, and the lowest level for r = 0.01. However, for 
the large problems having n = 50 and n = 100, the best 
parameter settings appear to be [e, e, N'] = [50, 0.01, 1001. 
These best quality solutions are obtained by sacrificing CPU 
time (thee = 50 results require about twice the time required 
by e = 15, and yield only slightly better solution quality). 

The high quality solutions obtained for the largest sized 
problems cause the authors to reason that perhaps e and N' 
have not been set high enough nor t low enough to observe 
the best solutions obtainable from application of the simu- 
lated annealing heuristic. But, increasing these parameters 
will certainly greatly increase the CPU time required. Fur- 
thermore, the solutions obtained at the current parameter 
settings (even with r = 15) are probably acceptable and are 
achieved with reasonable CPU time expenditure. 

From the foregoing observations and within the parametric 
bounds of the experimental framework discussed, it may he 
postulated that the simulated annealing heuristic yields good 
quality solutions if e = 15, r = 0.01 and N' = 100. Ofcourse, 
these parameter settings lead to longer CPU times to achieve 
the least cost assignment than different values of these pa- 
rameters. However, some trade-off must be made between 
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N' 

10 

50 

100 

criterion for all n,  e,  r, 

e = 15 

0.25 0.10 0.01 

0.54 0.52 0.44 
0.65 0.58 0.49 
0.66 0.71 0.53 
0.72 0.74 0.54 
1.21 1.23 0.95 
1.56 1.57 1.34 
2.41 2.42 2.15 
5.27 5.27 5.29 

14.95 14.98 14.52 
49.39 49.42 49.42 

1.14 1.28 1.40 
1.59 1.79 1.88 
2.04 1.90 1.93 
2.53 2.58 2.53 
3.68 3.55 4.51 
5.53 5.30 5.38 
9.12 9.12 10.82 

18.76 18.76 19.97 
49.13 49.56 46.11 

171.66 171.48 171.51 

1.50 1.73 1.88 
2.59 3.29 2.99 
3.13 3.58 3.85 
4.34 4.31 4.61 
7.46 7.36 8.79 
9.90 9.35 10.22 

15.61 15.62 20.21 
39.28 39.28 37.65 
88.32 88.29 86.01 

275.25 275.07 275.07 

c 
n 

5 
6 
7 
8 

12 
15 
20 
34 
50 

100 

5 
6 
7 
8 

12 
15 
20 
30 
50 

100 

5 
6 
7 
8 

12 
15 
20 
30 
50 

100 

and N' 

e = 25 

0.25 0.10 0.01 

0.49 0.47 0.44 
0.59 0.51 0.44 
0.63 0.60 0.48 
0.69 0.59 0.53 
1.06 1.08 0.85 
1.42 1.47 1.20 
2.28 2.19 1.80 
4.92 4.92 4.56 

12.98 12.98 13.21 
33.89 39.21 39.20 

1.33 1.45 1.36 
1.75 1.75 1.87 
1.72 2.01 2.01 
2.26 2.55 2.12 
3.87 3.63 3.76 
5.55 5.11 5.40 
8.15 8.02 8.20 

20.17 20.14 21.89 
44.03 44.02 56.70 

140.37 140.43 140.42 

1.94 1.84 2.05 
2.78 3.12 2.86 
3.88 3.81 3.81 
4.53 4.45 4.79 
7.28 6.87 6.93 
9.88 10.91 11.63 

15.24 15.67 18.82 
36.93 36.90 42.27 
91.39 96.61 86.72 

307.33 307.35 347.09 

e = 5 

0.25 0.10 0.01 

0.52 0.53 0.51 
0.61 0.60 0.57 
0.64 0.67 0.67 
0.70 0.67 0.75 
1.04 1.04 1.13 
1.67 1.66 1.78 
2.74 2.74 2.84 
5.82 5.79 5.62 

21.48 34.65 31.93 
80.83 93.17 93.02 

0.96 1.00 1.17 
1.22 1.20 1.37 
1.72 1.52 1.93 
1.72 1.80 2.29 
3.52 3.52 4.35 
5.36 5.36 6.51 
9.91 9.91 8.57 

16.31 16.26 18.40 
43.49 43.49 43.49 

229.57 229.62 229.60 

1.36 1.35 1.69 
2.35 2.07 1.98 
3.02 2.69 3.18 
3.03 3.13 3.76 
6.98 6.98 7.75 
8.88 8.89 11.98 

19.54 19.54 20.55 
31.18 31.20 34.19 
75.33 75.32 75.21 

335.82 335.47 335.49 

e = 50 

0.25 0.10 0.01 

0.44 0.44 0.44 
0.44 0.44 0.43 
1.47 0.47 0.47 
0.51 0.53 0.50 
0.88 0.83 0.81 
1.12 1.12 3.66 
1.85 1.80 1.76 
4.51 4.51 4.21 

19.32 19.31 17.61 
71.07 71.08 71.13 

1.41 1.41 1.41 
1.56 1.58 1.56 
1.88 1.89 2.12 
2.23 2.31 2.26 
3.70 3.98 3.44 
5.08 5.89 5.13 
8.07 8.36 7.51 

16.70 16.49 13.32 
54.96 54.84 62.97 

244.66 244.08 244.30 

2.76 2.76 2.76 
2.71 2.70 2.70 
3.85 3.51 3.50 
4.54 4.60 4.58 
7.77 7.06 7.00 

10.37 10.60 10.95 
15.13 17.23 16.44 
35.36 36.93 40.89 
99.46 99.44 92.85 

408.87 409.37 370.34 
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Table 3. Comparison of Solutions and CPU Times for a Number of QAP Solution Procedures 

I Best Cost CRAFT 1 
Number 

Of 
Depls. 

5 

Means 

6 

Means 

7 

Means 

8 

Means 

12 

Means 

15 

Means 

20 

Means 

30 

Starting 
Solution 

No. 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 

for 
Simulated 
Annealing 

25 
25 
25 
25 
25 
25 

43 
43 
43 
43 
43 
43 

74 
74 
74 
74 
74 
74 

107 
107 
107 
107 
107 
107 

289 
291 
293 
293 
289 
291 

576 
575 
576 
584 
580 
578.2 

1303 
1313 
1315 
1300 
1309 
1308.0 

3064 
3111 
3095 
3079 

CPU 
Time 
(Sec.1 

1.87 
1.87 
1.87 
1.87 
1.87 
1.87 

2.95 
2.94 
2.74 
2.74 
2.92 
2.86 

4.13 
3.45 
4.27 
3.83 
3.37 
3.81 

4.99 
5.05 
3.84 
4.99 
5.07 
4.79 

6.59 
7.32 
6.65 
7.56 
6.54 
6.93 

15.53 
9.40 

11.49 
10.72 
11.02 
11.63 

18.67 
15.45 
20.75 
20.14 
19.10 
18.82 

30.85 
43.75 
49.24 
40.15 

CRAFT 
Solution 

29 
29 
25 
29 
29 
28.2 

43 
43 
46 
43 
46 
44.2 

79 
78 
74 
84 
83 
79.6 

119 
107 
107 
110 
107 
110 

298 
308 
291 
295 
289 
296.2 

628 
588 
591 
640 
583 
606 

1334 
1354 
1351 
1324 
1332 
1339 

3090 
3192 
3197 
3273 

CPU 
Time 
(Sec.) 

0.56 
0.55 
0.56 
0.58 
0.59 
0.57 

0.54 
0.59 
0.56 
0.57 
0.61 
0.57 

0.73 
0.81 
0.78 
0.79 
0.71 
0.76 

0.72 
0.81 
0.72 
0.71 
0.73 
0.74 

1.32 
1.33 
1.46 
1.52 
1.33 
1.39 

1.83 
2.44 
2.41 
2.01 
2.39 
2.22 

5.81 
4.05 
4.71 
4.57 
4.91 
4.81 

28.54 
19.67 
20.48 
15.68 

CPU 
Time 
(Sec.) 

1.99 
1.87 
1.98 
2.08 
2.06 
2.00 

1.82 
1.92 
1.38 
1.90 
2.02 
1.91 

2.63 
3.1 9 
3.1 1 
3.07 
2.75 
2.95 

2.98 
3.29 
2.82 
2.98 
2.98 
3.01 

7.06 
6.82 
7.72 
8.28 
5.32 
7.04 

11.36 
17.10 
15.38 
14.87 
18.31 
15.40 

41 .XI 
35.50 
34.60 
39.60 
41.80 
39.50 

220.00 
217.00 
204.00 
202.00 

Revised 
Hillier 

solution 

25" 
25" 
25" 
25" 
25** 
25" 

43 
43 
43 
43 
43 
43 

72" 
72" 
76" 
74" 
72" 
73.2" 

107 
107 
109 
107 
107 
107.4 

304 
293 
307 
297 
291 
298.4 

596" 
580" 
575** 
576"' 
584" 
582.2" 

1328" 
1297" 
1348" 
1328" 
1322" 
1324.6" 

3070 
3147 
3153 
31 24 

CPU' 
Time 
(Sec.) 

0.24 

0.24 

0.55 

0.44 

1.35 

2.38 

5.83 

5 3150 47.35 3237 18.86 3106 214.00 3077 
Means 3099.8 42.27 3197.8 20.65 3124 211.00 3114.2 22.86 

Note: Unless otherwise indicated, all algorithmic results presented in this table were obtained from FORTRAN codes implemented on a DEC 
KL 1059 mainframe computer. All simulated annealing results are for the parameter setlingsln, e, c, N'] = [n, 15, 0.01, 1001. 
'Results of FORTRAN code run on a Prime 750 computer, as reported in [20]. 

"Different initial site layouts, and hence different distance matrices, from those in Nugent, et, al. were used for these problems in [ZO]. 

solution quality and CPU time as this is in reality a bi-criteria and the corresponding CPU times for the Nugent, Vollman 
optimization process. and Rum1 problem set obtained by simulated annealing with 

In order to compare the effectiveness of the simulated an- [e, E, N'] fixed at [15, 0.01, 1001 for all n, CRAFT, CRAFT 
nealing heuristic with other techniques for solving OAP's, Biased Sampling, and the Revised Hillier Procedure [ZO]. As 
Table 3 was constructed. I t  compares the costs of assignments seen, the simulated annealing algorithm obtained optimal as- 
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signments for n = 5, 6 , 7 ,  and 8. Since the optimal solutions 
for the larger problems with n = 12, 15, 20 and 30 are un- 
known, the authon are content with the fact that the simu- 
lated annealing algorithm obtained assignments with smaller 
costs (better quality) in practically every case, and required 
significantly less CPU time than biased sampling and about 
twice the time required by CRAFT and the revised Hillier 
procedure. Table 4 shows both the minimum and average 
costs and CPU times for all problems solved using the sim- 
ulated annealing algorithm, including the constructed prob- 
lems having n = 50 and n = 100 facilities. 

A power function of the form y = UXb was fitted to the 
average CPU time required by the algorithm (shown in Table 
4) versus problem size, n. A plot of the resulting function is 
shown in Figure 4. The equation of best fit was determined 
to be: 

CnU time (seconds) = 0.072 n'-679. 

with coefficient of determination r2 = 0.994. This curve im- 
plies that, as expected, as problem size increases so does the 
required CPU time. However, average solution time in- 
creases at a rate less than the square of problem size. 

I Table 4. Statistics for simulated annealina experiments across I 

The layouts of the problems solved showing the minimum 
cost assignments of facilities to sites, together with the CPU 
time required to obtain the solution, are shown in Figure 5 
(refer to Figure 2 for the corresponding site location num- 
bers). These are presented for the benefit of other QAP re- 
searchers who wish to compare their solutions with those 
achieved in this study. 

ali parameters [e, r, N', a01 for eachprob~em size, n 

Conclusions 

n 

This paper has studied the application of Kirkpatrick's, et. 
al. [22], framework for solving discrete combinatorial opti- 
mization problems through its application to QAP's by a sim- 
ulation-type heuristic. Tables 1 and 2 provide insight into the 
behavior of the heuristic with variation in four of the many 
possible parameters which may influence its performance. 
And, as seen in Table 3, the solution quality obtained by 

0 20 40 60 60 100 

Figure 4. Average CPU time required by all simulated annealing runs 
versus problem size, n 

5 1 25 25.00 0.001 0.37 124 0.69 

Total Cost 
Minimum Average Std. Dev. 

simulated annealing, when applied to a common problem set, 
was superior to that obtained by the traditional approaches 
to QAP for practically every starting solution and for the 
means over starting solutions. Further, the average CPU 
times required by simulated annealing was less than that re- 
quired by biased sampling and only slightly longer than that 
required by CRAFT and the revised Hillier procedure. Figure 
4 also correlates well with a conclusion drawn by Kirkpatrick, 
et. al. 1221, in which they state, "Our numerical studies sug- 
gest that results of good quality are obtained with annealing 
schedules in which the amount of computational effort scales 
as n or as a small power of n." And, as seen in Figure 4, for 
5 s n s 100, average CPU time scales as the 1.679 power of 
n for the example QAP's solved in this study. 

However, the results in Tables 1 and 2 came from a sig- 
nificant effort in experimental design and analysis requiring 
1584 separate runs of the simulated annealing algorithm un- 
der different combinations of parametric values. This com- 
putational experience has taught the authon the same lessons 
learned by Golden and Skiscim [W,  241, i.e., the simulated 
annealing procedure is sensitive to a number of control pa- 
rameters and stopping rules. And, perusal of Tables l and 2 
does not indicate consistently superior settings of the control 
parameters studied [e, r ,  and N']. Other potentially influential 
parameters on simulated annealing performance which were 
not studied in this research are N, maximum &, and the an- 
nealing temperature equation for t;. 

Given the above constraints on the study, application of 
simulated annealing to the "standard" Nugent, Vollman and 
Ruml 191, problem set yielded some superior solutions to the 
larger problems which have not been reported heretofore (see 
Figure 5). Larger problems (n = 50 and n = 100) were 
generated and solved for the benefit of computational ex- 
perience with simulated annealing. 

Even though the simulated annealing methodology is sen- 

CPU Time 
Minimum Average Std. Dev. 
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Cost = 25 Cost = 43 Cost = 107 
CPU = 0.16 CPU = 0.40 Cost = 74 CPU = 0.50 

CPU = 0.44 

Cost = 289 
CPU = 1.18 

n = 30 

Cost = 3064 
CPU = 30.85 

Cost = 575 
CPU = 1.29 Cost = 1285 

CPU = 15.23 

Cost = 24472 
CPU = 84.70 

n = 100 

Cost = 137011 
CPU = 374.64 

Figure 5. Minimum cost assignments of facilities to sites (CPU times are in seconds on a DEC System 10) 

sitive to a number of parameters, the authors believe, as do 
others, that it is a promising approach for solving wmbina- 
torial optimization problems like the QAP and that more 
research is warranted to define appropriate parameter values 
to optimize its effectiveness and efficiency. 
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